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CUBICS IN 10 VARIABLES VS. CUBICS IN 1000 VARIABLES:

UNIFORMITY PHENOMENA

FOR BOUNDED DEGREE POLYNOMIALS

DANIEL ERMAN, STEVEN V SAM, AND ANDREW SNOWDEN

Abstract. Hilbert famously showed that polynomials in n variables are not
too complicated, in various senses. For example, the Hilbert Syzygy Theorem

shows that the process of resolving a module by free modules terminates in
finitely many (in fact, at most n) steps, while the Hilbert Basis Theorem shows
that the process of finding generators for an ideal also terminates in finitely
many steps. These results laid the foundations for the modern algebraic study
of polynomials.

Hilbert’s results are not uniform in n: unsurprisingly, polynomials in n
variables will exhibit greater complexity as n increases. However, an array
of recent work has shown that in a certain regime—namely, that where the
number of polynomials and their degrees are fixed—the complexity of poly-
nomials (in various senses) remains bounded even as the number of variables
goes to infinity. We refer to this as Stillman uniformity, since Stillman’s con-
jecture provided the motivating example. The purpose of this paper is to give
an exposition of Stillman uniformity, including the circle of ideas initiated by
Ananyan and Hochster in their proof of Stillman’s conjecture, the followup
results that clarified and expanded on those ideas, and the implications for
understanding polynomials in many variables.

1. Introduction

In two landmark papers [34, 35], Hilbert laid the foundations for the modern
algebraic study of polynomials. The theorems at the heart of these papers show
that polynomials in n variables are not too complicated, in various senses. For
example, the Hilbert Syzygy Theorem shows that the process of resolving a module
by free modules terminates in finitely many (in fact, at most n) steps, while the
Hilbert Basis Theorem shows that the process of finding generators for an ideal also
terminates in finitely many steps. Hilbert used his theorems to show that invariant
rings are finitely generated, resolving one of the central problems of his day; in the
years since, entire fields of mathematics have been built around Hilbert’s results.

Obviously, polynomials in n variables will typically exhibit greater complexity as
n increases. In other words, Hilbert’s theorems are not uniform in n. However, an
array of recent work has shown that in a certain regime—namely, that where the
number of polynomials and their degrees are fixed—the complexity of polynomials
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remains bounded, at least according to a wide variety of measures. We refer to this
phenomenon as Stillman uniformity, as Stillman’s conjecture is the model case.
The purpose of this paper is to give an exposition of Stillman uniformity and some
of the work around it.

Our account is focused on four closely related threads of work, which we now
introduce and briefly summarize.

I. Stillman’s conjecture. The first indication, as far as we are aware, of the
general phenomenon of Stillman uniformity can be found in a conjecture posed by
Michael Stillman around the year 2000.1 Recall that the projective dimension of a
module is the minimal length of a projective resolution (see §7 for a review). This
is a fundamental, albeit rather technical, invariant. The Hilbert Syzygy Theorem
is exactly the statement that every module over an n-variable polynomial ring
has projective dimension at most n. Stillman’s conjecture refines this theorem: it
asserts that the projective dimension of an ideal in an n-variable polynomial ring
generated by r homogeneous polynomials2 of degrees ≤ d can be bounded in terms
of r and d, but is independent of the number n of variables. In other words, in this
particular regime, the Hilbert Syzygy Theorem holds uniformly in n. Stillman’s
conjecture was proved by Ananyan and Hochster [2] in 2016, and has subsequently
been reproven by us [26] and Draisma, Lasoń, and Leykin [20].

II. The Ananyan–Hochster principle. In the course of proving Stillman’s con-
jecture, Ananyan and Hochster prove a number of fundamental results on the struc-
ture of polynomials. These results can be seen as special cases of the following
general principle, which we call the Ananyan–Hochster principle. Given homoge-
neous polynomials f1, . . . , fr of degrees ≤ d in any number n of variables, one can
write fi = Fi(g1, . . . , gs) where Fi is a polynomial and g1, . . . , gs are homogeneous
polynomials of degrees ≤ d such that

(a) s depends only on d and r (and, crucially, not on n); and
(b) g1, . . . , gs behave approximately like s independent variables.

In other words, the fi’s look like polynomials in s variables. For instance, four
cubic polynomials in 1000 variables (or in 1010 or 10100 variables) will behave like
polynomials in s variables for some fixed s. One can therefore expect the fi’s to
satisfy the same sort of finiteness properties that Hilbert established, and thereby
obtain Stillman uniformity.

Of course, it is crucial here to understand the exact meaning of condition (b). In
fact, there are many possible precise meanings, and each yields a definite statement
that may or may not be true. Ananyan and Hochster proved a number of incar-
nations of the principle, and subsequently other incarnations have been proved as
well. This is discussed in much more detail in §3–§6.

III. Big polynomial rings. We say that a homogeneous polynomial f is n-
decomposable if it can be written in the form f = F (g1, . . . , gn), where F is a
polynomial and the gi are homogeneous polynomials of smaller degree than f .
This is one way to measure the complexity of f . For homogeneous polynomials

1It first appeared in print in [24, §1]; see also [48, Problem 3.14].
2A polynomial is homogeneous if all terms have the same degree. For instance x31 + x1x2x3 is

homogeneous of degree 3, but x3
1 + x2

1 is not homogeneous.
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f1, . . . , fr, we let ν(f1, . . . , fr) be the minimum value of n such that some nontriv-
ial homogeneous linear combination of the fi’s is n-decomposable. This is a kind
of measure of the joint complexity of the fi’s. The Ananyan–Hochster principle
easily reduces to the following claim. If ν(g1, . . . , gs) is large, then g1, . . . , gs be-
have approximately like independent variables. This is an asymptotic statement:
as ν-complexity increases, so does the approximation to independent variables.

A general principle of mathematics is that it is often useful to take the limit of an
asymptotic statement to obtain an exact statement. Indeed, the limiting statement
is often cleaner and can reveal deeper truths about the asymptotic situation. In
[26] we applied this philosophy to the Ananyan–Hochster principle. We defined two
rings R and S, which, in this paper, we refer to as the ring of bounded-degree series
and the ring of bounded-degree germs. These rings can be viewed as two different
limits3 of the n-variable polynomial rings as n tends to infinity. One can define
the quantity ν(g1, . . . , gs) for g1, . . . , gs in either of these rings; in contrast to the
polynomial case, this invariant is often infinite in these rings.

Any element f of R or S can be expressed in the form F (g1, . . . , gs) where F is a
polynomial and ν(g1, . . . , gs) is infinite. The Ananyan–Hochster principle suggests
that if g1, . . . , gs have infinite ν-complexity, then they should behave exactly like s
independent variables. One of the main theorems of [26] verifies this: If g1, . . . , gs
have infinite ν-complexity, then they literally are independent variables, up to an
isomorphism. That is, the rings R and S are abstractly isomorphic to polynomial
rings (in uncountably many variables; hence “big”), and under the isomorphism,
g1, . . . , gs correspond to distinct variables. These theorems provide idealized forms
of the Ananyan–Hochster principle.

These idealized forms are not only aesthetically pleasing statements, they are also
useful: one can deduce some of the most important incarnations of the Ananyan–
Hochster principle from them. In fact, the cleanest proof of Stillman’s conjecture,
in our opinion, proceeds by first proving the idealized Ananyan–Hochster principle
for S, then deducing an instance of the ordinary Ananyan–Hochster principle from
this, and finally deducing Stillman’s conjecture from this. We explain this line of
reasoning in the body of the paper.

IV. GL-noetherianity. Let Xd be the space of homogeneous polynomials of de-
gree d in variables x1, x2, . . .. A homogeneous polynomial of degree d can be written
in the form

∑
α cαx

α, where the sum is over multi-indices α of degree d and the cα
are complex numbers, all but finitely many of which vanish. We thus see that Xd

can be identified with the space of tuples (cα) and that Xd is therefore isomorphic
to an infinite-dimensional complex vector space. The group GL∞ acts on Xd via
linear substitutions in the variables.

Draisma [19] proved the following fundamental finiteness result: Xd is a GL∞-
noetherian variety. (More generally, he showed that Xd1

× · · · × Xdr
is GL∞-

noetherian, for any d1, . . . , dr.) The precise meaning of this theorem and the way
in which it extends the Hilbert Basis Theorem is spelled out in §9.

Draisma’s theorem is closely related to the Stillman uniformity phenomenon. In
[26], we combined Draisma’s theorem and our idealized Ananyan–Hochster prin-
ciple for R to give an entirely different, and more geometric proof, of Stillman’s

3As we will see, the ring R arises as an inverse limit, a common algebraic construction. The
ring S is a bit more exotic and involves the model-theoretic notion of an ultraproduct.
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conjecture. In [20], Draisma, Lasoń, and Leykin gave yet another proof of Still-
man’s conjecture, deducing it from Draisma’s theorem and establishing some addi-
tional important finiteness results. In [25], we combined Stillman’s conjecture and
Draisma’s theorem to prove a vast generalization of Stillman’s conjecture, where
the invariant projective dimension is replaced by an arbitrary invariant satisfying a
few simple axioms. This indicates that Stillman uniformity really is a far-reaching
phenomenon.

Remark 1.1. Throughout, we will assume that the coefficients of all polynomials are
complex numbers. It is possible to allow other fields, but the discussion becomes
more subtle. Thus, for example, restricting to polynomials with real coefficients
would change the discussion somewhat. See §10.1 for a discussion of how the results
depend on the field of coefficients. �

This paper is organized as follows:

• In §2–§3 we state the Ananyan–Hochster principle in general, as well as
several precise incarnations of it. The aim here is to state rigorous and
interesting results that require minimal background to understand. No
indication of proofs is given.

• In §4–§5, we introduce the ringsR and S and state the idealized forms of the
Ananyan–Hochster principle. The main aim is to motivate the introduction
of these rings and explain the idealized principle; however, we also give a
brief account of the proof, which is entirely elementary.

• In §6–§8, we explain the connections between Stillman’s conjecture, the
Ananyan–Hochster principle, and the idealized Ananyan–Hochster princi-
ple. More precisely, in §6 we explain how to deduce the most important
incarnation of the Ananyan–Hochster principle from the idealized principle
for S. In §7, we review syzygies in general and precisely formulate Still-
man’s conjecture. In §8, we explain how to deduce Stillman’s conjecture
from the incarnation of the Ananyan–Hochster principle established in §6.
Thus, by the end of §8, we will have explained all of the key steps in one
of the proofs of Stillman’s conjecture.

• In §9, we discuss Draisma’s theorem and its connections to Stillman uni-
formity.

• Finally, in §10, we briefly review an array of related results and further
topics.

We hope that any reader with a general mathematical background should be able
to follow the material up to §5 without great difficulty. The material in §6–§8 is
more specialized, but we have attempted to make it self-contained. The material in
the final two sections relies on more background and is not self-contained, though
we have tried to make it as accessible as possible.

2. Decomposing polynomials

There are many sensible ways that one could attempt to measure the complexity
of polynomials. For the purposes of this paper, we consider a polynomial to be
simple if it can be decomposed into a small number of lower degree polynomials.
To this end, we recall the following definition from the introduction.

Definition 2.1. A homogeneous polynomial f is n-decomposable if there exist
homogeneous polynomials g1, . . . , gn of strictly lower degree and a polynomial
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F (X1, . . . , Xn) such that f = F (g1, . . . , gn). We let the ν-complexity of f , de-
noted ν(f), be the minimal n for which f is n-decomposable, with the convention
that ν(f) = 0 if f is constant and ν(f) = ∞ if f is a nonzero linear form. �

Example 2.2. If f = (x2
1+x2

2+x2
3)

3, then choosing g1 = x2
1+x2

2+x2
3 and F = X3

1

shows that ν(f) ≤ 1. But ν(f) cannot equal 0 unless f is constant, and thus
ν(f) = 1. �

Example 2.3. Suppose that f = x2
1 + · · ·+ x2

n. We claim that ν(f) = n, i.e., that
f is not (n − 1)-decomposable. To see this, suppose that f = F (g1, . . . , gm) with
m < n and each gi of degree < 2. The gj ’s of degree 0 are simply scalars and can
be absorbed into F ; thus we can assume each gi has degree 1. Thus F (X1, . . . , Xm)
is itself a homogeneous polynomial of degree 2. The expression f = F (g1, . . . , gm)
shows that f has rank ≤ m, in the sense of quadratic forms. However, we know
that f has rank n, which is a contradiction. �

Example 2.4. If f has degree ≥ 2 and uses the variables x1, . . . , xn, then f is
necessarily n-decomposable, as one can take gi = xi and F = f . Hence ν(f) ≤ n.
However, it can be the case that the ν-complexity of f is much smaller than the
number of variables needed to express f . For instance, if f = (x2

1 +x2
2+ · · ·+x2

n)
3,

then f requires n variables and yet, as in Example 2.2, one can check that ν(f) =
1. �

A collection of homogeneous polynomials {f1, . . . , fr} is n-decomposable if some
nontrivial homogeneous linear combination α1f1 + · · · + αrfr is n-decomposable
(the αi are complex numbers, not all 0). As above, we define ν(f1, . . . , fr) to be
the minimal n such that {f1, . . . , fr} is n-decomposable.

We note two extreme cases. If the fi are linearly dependent, then ν(f1, . . . , fr) =
0. On the other hand, ν(f1, . . . , fr) = ∞ if and only if all fi are linearly independent
forms of degree 1.

Remark 2.5. Ananyan and Hochster in [2] define a homogeneous polynomial f to

have strength k if there is an expression of the form f =
∑k

i=0 gihi where the gi
and hi are homogeneous polynomials of strictly smaller degree than f , and k is
minimal as such. Strength and ν-complexity are asymptotically equivalent, in the
sense that one is large if and only if the other is. �

3. The Ananyan–Hochster principle

In their proof of Stillman’s conjecture [2], Ananyan and Hochster discovered
the following principle that predicts the behavior of polynomials that have large
ν-complexity.

Ananyan–Hochster principle. If f1, . . . , fr are homogeneous polynomials such
that the ν-complexity ν(f1, . . . , fr) is large compared to r and to the degrees of the
fi’s, then {f1, . . . , fr} behaves approximately like a set of r independent variables.

This is just a principle, not a theorem, since the statement is imprecise. Ananyan
and Hochster proved several precise theorems that motivated the statement of this
principle, and subsequently more instances of this principle were discovered. In the
rest of this section, we look at some of the incarnations of the principle.

The principle can be used to generate precise predictions as follows. Start with
a general algebraic property that holds for independent variables. The principle
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then predicts that if f1, . . . , fr are homogeneous polynomials with ν(f1, . . . , fr) suf-
ficiently large (relative to the degrees of f1, . . . , fr), then f1, . . . , fr will also satisfy
this property. For example, independent variables are algebraically independent in
the sense that there are no nontrivial polynomial relations among them. The prin-
ciple thus predicts that if f1, . . . , fr have sufficiently high ν-complexity, then they
too should be algebraically independent. In fact, this prediction is correct and is
implied by one of the results proven in [2].

Here is a deeper consequence. A basic fact from linear algebra is that the so-
lution set to r linearly independent linear equations in x1, . . . , xn is a subspace
of codimension r, i.e., it is a subspace of dimension n − r. The natural gener-
alization of this property to higher degree polynomials often fails. For example,
consider the solution set to the equations xy = xz = 0 in variables x, y, z. The
solution set contains the subspace x = 0 and hence has (complex) codimension 1,
rather than the expected codimension 2, even though xy and xz are linearly (and
even algebraically) independent. We say that homogeneous polynomials f1, . . . , fr
in variables x1, . . . , xn are a regular sequence when the locus in Cn defined by
f1 = · · · = fr = 0 has codimension r. The polynomials in a regular sequence are
automatically algebraically independent, and for many applications in commutative
algebra and algebraic geometry this is the most useful notion of independence.

The solution set x1 = · · · = xr = 0 of r independent variables always has codi-
mension r. Thus the Ananyan–Hochster principle suggests the following theorem,
which was first proven by Ananyan and Hochster. It remains one of the most
important instances of the general principle, and we will return to it §6.

Theorem 3.1. If f1, . . . , fr are homogeneous polynomials of degrees at most d such
that ν(f1, . . . , fr) � d, r, then f1, . . . , fr is a regular sequence.

The above theorem essentially says that the Ananyan–Hochster principle holds
for codimension. Here are some other properties for which it holds. In the following
list, we assume that f1, . . . , fr are polynomials (in some unspecified number of
variables n) with deg(fi) ≤ d for all 1 ≤ i ≤ r, and that ν(f1, . . . , fr) � d, r.

• Irreducibility and connectedness. The solution set f1 = · · · = fr = 0 is
irreducible. (Recall that an algebraic set is irreducible if it is not the union
of two proper closed algebraic sets. The typical example of a reducible
algebraic set is the solution set of xy = 0, which is the union of the loci
defined by x = 0 and y = 0.) In particular, this set is also connected.

• Primality. The ideal of C[x1, . . . , xn] generated by f1, . . . , fr is prime. This
is slightly stronger than irreducibility.

• Smoothness. The set of singular points of the solution set of f1 = · · · =
fr = 0 has large codimension. Precisely, given any c the singular locus has
codimension ≥ c assuming ν(f1, . . . , fr) � c, d, r.

• Cohomology. The solution set of x1 = · · · = xr = 0 is isomorphic to the
affine space Cn−r. The compactly supported cohomology of this space is
easy to compute: the top group is Z, and all other groups vanish. The
same is true for the algebraic set X defined by f1 = · · · = fr = 0, in the
following sense. Given any k, the top k compactly supported cohomology
groups of X agree with those of Cn−r, assuming ν(f1, . . . , fr) � k, d, r.

The first three examples in this list follow from [2, Theorem A]. The one about
cohomology follows from the one about smoothness and a result of Dimca; see [38].
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Remark 3.2. One cannot expect the Ananyan–Hochster principle to apply to every
property of independent variables. For instance, independent variables define a
solution set x1 = · · · = xr = 0 where every point is smooth; by contrast, for
homogeneous polynomials f1, . . . , fr of degree > 1 the solution set will always be
singular at the origin of Cn. It remains an interesting open problem to determine
exactly which incarnations of the Ananyan–Hochster principle are true. One recent
result in this direction is provided by Bik, Draisma, and Eggermont [11], as we
discuss in §10.7. �

4. Homogeneous series

The Ananyan–Hochster principle, as we have formulated it, is an asymptotic
statement: as ν(f1, . . . , fr) grows, the polynomials f1, . . . , fr more closely resemble
r independent variables. General mathematical principles suggest that we should
try to construct a limiting situation where this approximation becomes exact. In
this section, we exhibit one such limiting situation; §5 will exhibit another.

4.1. Homogeneous series. Recall, from Example 2.3, that ν(x2
1+x2

2+ · · ·+x2
n) =

n. Taking the limit as n tends to infinity suggests that the formal infinite sum∑
i≥1 x

2
i should be indecomposable (i.e., not n-decomposable for any n), assuming

that we can rigorously make sense of this statement. We now do just that.
A homogeneous series of degree d is a formal sum f =

∑
α cαx

α where the sum
is over all multi-indices α of degree d and the cα are arbitrary complex numbers.
(A multi-index is a sequence α = (α1, α2, . . .) of nonnegative integers such that all
but finitely many are zero. The degree of a multi-index is α1 + α2 + · · · , and xα

denotes the monomial xα1
1 xα2

2 · · · .) For example,
∑

i≥1 x
2
i is a homogeneous series

of degree 2.

Definition 4.1. A homogeneous series f is n-decomposable if there exist homo-
geneous series g1, . . . , gn of strictly lesser degree and a polynomial F (X1, . . . , Xn)
such that f = F (g1, . . . , gn). We say that f is indecomposable if it fails to be
n-decomposable for all n.

We say that homogeneous series f1, . . . , fr are jointly indecomposable if every
nontrivial homogeneous linear combination of them is indecomposable. An infinite
collection of homogeneous series is jointly indecomposable if every finite subcollec-
tion is. �

To ensure that this definition makes sense, one needs to check that if g1, . . . , gn
are homogeneous series and if F (X1, . . . , Xn) is appropriately homogeneous, then
F (g1, . . . , gn) is also a homogeneous series. This amounts to checking two facts:
first, if f and g are homogeneous series, then so is fg under the standard product
of series; second, any linear combination of homogeneous series of equal degree is
again a homogeneous series. Both are easily verified.

We can also extend the definition of ν to homogeneous series in the obvious way.
However, in this setting we will only ever care about ν being infinite or finite, not
its exact value, and infinite ν-complexity is equivalent to (joint) indecomposability.

Example 4.2. The homogeneous series f =
∑

i≥1 x
2
i is indecomposable. �

Example 4.3. Let f1 =
∑

i≥1 xi and f2 =
∑

i≥1 x
2
i . Since f1 and f2 have different

degrees, any homogeneous linear combination α1f1+α2f2 must have either α1 = 0
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or α2 = 0. Since f1 is linear and f2 is indecomposable (by the previous example),
it follows that f1 and f2 are jointly indecomposable. �

Example 4.4. For each d ≥ 1, let fd =
∑

i≥1 x
d
i . It turns out that each fd is

indecomposable. Since the fd all have different degrees, any homogeneous linear
combination of the fd will be a scalar multiple of one of the fd. It follows that the
infinite set {f1, f2, . . . } is jointly indecomposable. �

Example 4.5. Let f1 =
∑

i≥1 x
2
i and f2 =

∑
i≥1 ix

2
i . One can show that f1 and

f2 are jointly indecomposable. �

4.2. The main theorem. We introduced homogeneous series with the hope that
we could replace the asymptotic form of the Ananyan–Hochster principle with some-
thing more precise. We now see our hopes realized.

Theorem 4.6. Any collection of jointly indecomposable homogeneous series of pos-
itive degree is algebraically independent.

For example, the dth power sums fd from Example 4.4 are algebraically inde-
pendent. The theorem is equivalent to two other noteworthy statements that we
give as corollaries.

Corollary 4.7. Let {gi}i∈I be a maximal set of jointly indecomposable homoge-
neous series of positive degree, where I is an index set. Given any homogeneous se-
ries f there exist distinct indices i1, . . . , in ∈ I and a polynomial F ∈ C[X1, . . . , Xn]
such that f = F (gi1 , . . . , gin). Moreover, this expression is unique up to applying a
permutation to i1, . . . , in and the inverse permutation to F .

To state our second corollary, we must introduce a new object. A bounded degree
series is a finite sum of homogeneous series, of possibly different degrees. Let R
be the set of all bounded degree series. As any sum or product of bounded degree
series is again a bounded degree series, we see that R forms a commutative ring.
Theorem 4.6 translates into the following precise description of the structure of R.

Corollary 4.8. The ring R is abstractly a polynomial ring. Precisely, let {gi}i∈I

be a maximal set of jointly indecomposable homogeneous series of positive degree.
Then R is isomorphic to the polynomial ring C[Xi]i∈I with variables indexed by I.
The isomorphism takes a polynomial F (Xi)i∈I to the bounded degree series F (gi)i∈I

obtained by substituting gi for Xi for all i.

This final corollary meets our goal of finding a precise form of the Ananyan–
Hochster principle: it shows that jointly indecomposable homogeneous series are
literally independent variables (up to an isomorphism).

Remark 4.9. The index set I in Corollary 4.8 is always of uncountable cardinality,
and so there are uncountably many variables in the ring C[Xi]i∈I. �

4.3. Back to polynomials. While this idealized Ananyan–Hochster principle for
homogeneous series provides some helpful conceptual clarity, we would really like
to use it to also derive results for polynomials, such as those in §3. Unfortunately,
the most direct approach to doing so does not really work.

For example, suppose we wanted to try to prove Theorem 3.1. Thus we start with
a sequence f1,i, . . . , fr,i of tuples of polynomials indexed by i ∈ N with ν-complexity
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tending to infinity, and we would like to show that the ith tuple is a regular sequence
for i � 0. The most direct approach would be to somehow define homogeneous
series f1, . . . , fr by taking the limit of f1,i, . . . , fr,i as i → ∞, then to apply the
results of this section to conclude that f1, . . . , fr forms a regular sequence, and
finally to argue that this implies f1,i, . . . , fr,i form a regular sequence for all i � 0.
The problem with this approach is in forming the limit: given an arbitrary sequence
(gi)i≥1 of polynomials, there is not necessarily a reasonable limiting homogeneous
series. (For example, consider the case where gi is simply xi itself.)

It turns out that one can apply Corollary 4.8 to the study of polynomials (see the
proof of Theorem 9.12), but the connection is much more subtle than the approach
outlined above. One of the great advantages of our second idealized Ananyan–
Hochster principle, discussed in the following section, is that it does directly connect
to polynomials.

4.4. Proof of the main theorem. The proof we give in [26] of Theorem 4.6
is short and entirely elementary. We now give some indication of the main idea.
Consider a hypothetical algebraic relation

F (f1, . . . , fr) = 0,

where F (X1, . . . , Xr) is a polynomial and f1, . . . , fr are jointly indecomposable
homogeneous series. Now differentiate this equation with respect to some variable,
say xi. (We differentiate homogeneous series termwise.) By the chain rule, we
obtain

(4.10)

r∑
j=1

Fj(f1, . . . , fr)
∂fj
∂xi

= 0,

where Fj =
∂F
∂Xj

is the jth partial derivative of F (X1, . . . , Xr). This is an algebraic

relation among the 2r homogeneous series f1, . . . , fr, ∂f1/∂xi, . . . , ∂fr/∂xi. Its total
degree is one less than that of the original relation. Thus, arguing inductively on the
total degree, we can assume that this relation is trivial. (There is a subtlety here:
the 2r series in this relation may no longer be jointly indecomposable. However,
one can express them in terms of some set of jointly indecomposable series, and
then, after making these substitutions, the resulting algebraic relation is trivial.)
As this holds for all choices of the variable xi, one can conclude that the original
relation is trivial. We refer the reader to [26, §2] for the details.

5. Homogeneous germs

We now describe a second way to construct a limiting setting in which the
Ananyan–Hochster principle becomes exact, using techniques from model theory.
Compared to the approach of the previous section, this approach is more technical,
but it has the advantage of applying more directly to ordinary polynomials.

5.1. Homogeneous sequences. As the Ananyan–Hochster principle is concerned
with the limiting behavior of homogeneous polynomials of fixed degree, it is natural
to introduce the following definition:
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Definition 5.1. A homogeneous sequence is a sequence f• = (f1, f2, f3, . . . ) of
homogeneous polynomials, all of the same degree, which we refer to as the degree
of f•. �

Thus we are interested in the limiting behavior of homogeneous sequences. The
primary technical problem here is the same problem that one encounters when
studying limits of any kind: they need not be defined. In other words, a homoge-
neous sequence may exhibit one kind of limiting behavior along one subsequence,
and another along another. For example, consider the homogeneous sequence f•
given by

(5.2) fi =

{
x2
2 + · · ·+ x2

i if i is even,

x2
1 if i is odd.

This has ν(fi) = 1 for i odd and ν(fi) = i for i even; thus on odd integers, f• de-
composes uniformly, but on the even integers it does not. This is but one example
of what can go wrong. Here is another: One can have a homogeneous series f• with
ν(fi) ≤ 2 for all i, so that each fi can be written as a function of two lower degree
polynomials; however, it could be that for i odd these two polynomials each have
degree 1, while for i even they each have degree 2. Thus, writing fi = Fi(g1,i, g2,i),
the sequences g1,• and g2,• are not homogeneous sequences, since they do not have
constant degree. In other words, decomposing a uniformly decomposable homoge-
neous sequence might take us outside of the world of homogeneous sequences.

These issues may seem like mere annoyances, but when carrying out complicated
operations on homogeneous sequences they compound and create so much book-
keeping as to obscure the main ideas. It is therefore highly desirable to come up
with a way to have well-defined limiting behavior.

Let us return to the example of (5.2), where the sequence f• has different be-
havior on even and odd integers. Imagine that the even integers converged to some
point p and the odd integers to some point q. We could then say that f• exhibits
one type of behavior near p, and another type near q. This suggests that we should
try to work with our homogeneous sequences locally with respect to some topology
on the index set N.

Of course, this raises the question of which topology to use. In fact, there is a
“best” choice: the Stone–Čech compactification. The Stone–Čech compactification
βX of a topological space X is the universal compact Hausdorff space that admits
a continuous map from X. We are mainly interested in the Stone–Čech compact-
ification βN of the discrete topological space N. It is not difficult to see that βN
is totally disconnected and that N is a dense subset of βN. This is essentially all
that one needs to know of βN for our discussion.

Since βN is compact, every sequence in it has a limit point. Thus, in the context
of (5.2), one can essentially do what we had hoped and work with the limiting points
p and q; this is only slightly incorrect, due to the fact that the even and odd integers
will not have unique limiting points.

This discussion suggests that we should study the local behavior of homogeneous
sequences at some point of βN. This turns out to work very well, and is what we
will do in §5.2. However, before beginning that discussion we give a more direct
description of the points of βN that does not rely on topology.
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Definition 5.3. Let X be a set. An ultrafilter on X is a collection U of subsets of
X satisfying the following conditions:

• Given A ⊂ B ⊂ X with A ∈ U, we have B ∈ U.
• Given A,B ∈ U. we have A ∩B ∈ U.
• Given A ⊂ X, either A ∈ U or X \A ∈ U.
• The empty set does not belong to U.

Given x ∈ X, the collection U of subsets of X containing x is an ultrafilter on X,
called the principal ultrafilter at x. �

If x is a point in the Stone–Čech compactification βX (regarding X as a discrete
space), then the collection

{U ∩X | U is an open neighborhood of x in βX}

is an ultrafilter on X. In fact, this gives a bijection between βX and the set of
ultrafilters on X, with elements of X ⊂ βX corresponding to principal ultrafilters.
Thus, instead of working with a point of βN, we can work with an ultrafilter on N,
and this is what we actually do. Principal ultrafilters do not lead to an interesting
theory, so we will only use nonprincipal ultrafilters. We note, however, that the
existence of nonprincipal ultrafilters relies on the axiom of choice; in particular, one
cannot write down an example of one explicitly.

5.2. Homogeneous germs. Fix a nonprincipal ultrafilter on N. We let ∗ denote
the corresponding point of βN \ N and we refer to subsets in the ultrafilter as
“neighborhoods of ∗”.

Definition 5.4. We say that a homogeneous sequence f• is decomposable near ∗
if there exist homogeneous sequences g1,•, . . . , gn,• of degree strictly less than that
of f• and polynomials F•, such that fi = Fi(g1,i, . . . , gn,i) holds for all i in some
neighborhood of ∗. �

Example 5.5. Let f• be the homogeneous sequence given by

fi =

{
x2
1 + · · ·+ x2

i if i is even,

x2
1 if i is odd.

This sequence may or may not be decomposable near ∗, depending on what point
of βN we have chosen for ∗. If the even numbers form a neighborhood of ∗, then
f• is indecomposable near ∗; if the odd numbers form a neighborhood of ∗, then f•
is decomposable near ∗. Exactly one of these two possibilities holds by the axioms
for ultrafilters. �

Whether or not f• is decomposable near ∗ only depends on its local behavior
near ∗. From analysis and sheaf theory, we know that to study local behavior we
should consider germs. We therefore make the following definition.

Definition 5.6. We define an equivalence relation ∼ on homogeneous sequences
as follows: we declare f• ∼ g• if fi = gi for all i in some neighborhood of ∗.
A homogeneous germ is an equivalence class of homogeneous sequences. For a
homogeneous sequence f•, we let [f•] denote the homogeneous germ that it defines.

�
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Homogeneous germs are well-behaved, from a formal point of view. Indeed, sup-
pose that [f•] and [g•] are homogeneous germs. We can then define their product
[f•][g•] to be the homogeneous germ [f•g•], where f•g• is defined pointwise. One
easily verifies that this is indeed well-defined. Similarly, we can define addition of
homogeneous germs of the same degree. We have the following interesting obser-
vation.

Proposition 5.7. The set of homogeneous germs of degree 0 forms a field, under
the addition and multiplication laws just defined.

Proof. It is an easy exercise to see that the addition and multiplication laws endow
the set of homogeneous germs of degree 0 with the structure of a commutative ring.
Let us explain why it is a field. Thus suppose that [α•] is a nonzero homogeneous
germ of degree 0. We must show that it has a reciprocal.

What does it mean that [α•] is nonzero? It means that it is not equal to the
zero homogeneous germ, which by definition, is the homogeneous germ that is the
identity for addition. Clearly, this is the homogeneous germ [0•] where 0• is the
homogeneous sequence given by 0i = 0 for all i. Our hypothesis is thus [α•] �= [0•].
By definition, this means that α• and 0• are inequivalent under ∼. Thus, if U
denotes the set of indices i ∈ N for which αi = 0, then U is not a neighborhood
of ∗. But, by the axioms of ultrafilters, this means its complement V = N \ U is a
neighborhood of ∗. In other words, αi is a nonzero complex number for all i in the
neighborhood V of ∗.

Now, define a homogeneous sequence β• by

βi =

{
α−1
i for i ∈ V ,

1 for i ∈ U .

Then αiβi = 1 for all i in the neighborhood V , and so [α•][β•] = [1•], where 1• is
the homogeneous sequence with 1i = 1 for all i. As [1•] is clearly the multiplicative
unit for homogeneous germs, we see that [β•] is the reciprocal of [α•], and so the
proposition follows. �

Let ∗C be the field of homogeneous germs of degree 0. This field is the ultrapower
of the field C of complex numbers, sometimes called the field of hypercomplex
numbers. It is an enormous field—it is an algebraically closed extension of C of
uncountable degree—and it is hard to really picture. However, it is easy to work
with ∗C in a formal sense: its elements are simply sequences of complex numbers
up to the equivalence relation ∼.

The significance of ∗C to the present discussion is that it is the appropriate field
of scalars for working with homogeneous germs. Indeed, if [α•] ∈ ∗C and [f•] is
a homogeneous germ of degree d, then [α•][f•] = [α•f•] is again a homogeneous
germ of degree d. Thus the set of homogeneous germs of degree d is a vector space
over ∗C. Furthermore, we find that any polynomial expression in homogeneous
germs with coefficients in ∗C, and that is appropriately homogeneous, is again a
homogeneous germ. The following definition is therefore forced onto us by analogy
with our previous ones.

Definition 5.8. A homogeneous germ [f•] is n-decomposable if there exist homo-
geneous germs [g1,•], . . . , [gn,•] and a polynomial F (X1, . . . , Xn) with coefficients
in ∗C such that [f•] = F ([g1,•], . . . , [gn,•]); it is indecomposable if it fails to be
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n-decomposable for all n. A collection of homogeneous germs of positive degree is
jointly indecomposable if every nontrivial homogeneous ∗C-linear combination is
indecomposable. �

The following proposition, which we leave as an exercise, connects the two notions
of decomposability introduced in this section.

Proposition 5.9. Let f• be a homogeneous sequence. Then [f•] is decomposable
(in the sense of Definition 5.8) if and only if f• is decomposable near ∗ (in the
sense of Definition 5.4).

This proposition, while entirely formal, is conceptually important because it
shows that the decomposability of f• near ∗ can detected from the germ [f•] and
germ-level constructions (germ addition, multiplication, and scalar multiplication).
In other words, one does not have to “look inside” of [f•] to determine if f• is
decomposable near ∗.

5.3. The main theorem. The main theorem, and its corollaries, in the setting of
homogeneous germs is entirely analogous to that for homogeneous series, and once
again it realizes an idealized form of the Ananyan–Hochster principle.

Theorem 5.10. Any collection of jointly indecomposable homogeneous germs of
positive degree is algebraically independent (relative to the coefficient field ∗C).

The proof of this theorem is nearly identical to the proof outlined in §4.4.

Corollary 5.11. Let {[gi,•]}i∈I be a maximal set of jointly indecomposable homo-
geneous germs of positive degree, where I is an index set. Given any homogeneous
germ [f•], there exist distinct indices i1, . . . , in ∈ I and a polynomial F (with coef-
ficients in ∗C) such that [f•] = F ([gi1,•], . . . , [gn,•]). Moreover, this expression is
unique up to applying a permutation to i1, . . . , in and the inverse permutation to
F .

A bounded degree germ is a finite sum of homogeneous germs, of possibly varying
degrees. Let S be the set of all bounded degree germs. This is a graded ring and
contains the field ∗C as its degree 0 piece.

Corollary 5.12. The ring S is a polynomial ring (over ∗C). Precisely, let
{[gi,•]}i∈I be a maximal set of jointly indecomposable homogeneous germs of posi-
tive degree. Then S is isomorphic to the polynomial ring ∗C[Xi]i∈I with variables
indexed by I. The isomorphism takes a polynomial F (Xi)i∈I to the bounded degree
germ F ([gi,•])i∈I obtained by substituting [gi,•] for Xi for all i.

Much like Corollary 4.8, this corollary meets our goal of finding a precise form
of the Ananyan–Hochster principle.

Remark 5.13. Ultraproducts were previously used in commutative algebra to es-
tablish uniform bounds for polynomials in a fixed number of variables but with a
varying coefficient field [53]. Our results, which also allow for a varying field, are
novel in that they allow the number of variables to grow. Ultrafilters have also been
used to connect results in characteristic p and in characteristic 0; see [50]. �
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6. Homogeneous germs and regular sequences

We now explain how to use the idealized Ananyan–Hochster principle for ho-
mogeneous germs to deduce Theorem 3.1, which is an instance of the Ananyan–
Hochster principle for polynomials. The same method can be used to deduce other
instances. For clarity, we rephrase Theorem 3.1 as follows:

Theorem 6.1. Given d, r ∈ N, there exists N ∈ N with the following property:
if f1, . . . , fr are homogeneous polynomials of degrees ≤ d with ν(f1, . . . , fr) > N ,
then f1, . . . , fr forms a regular sequence.

Sketch of proof. Consider a sequence (f1,i, . . . , fr,i)i≥1 of tuples of homogeneous
polynomials of degrees ≤ d with ν(f1,i, . . . , fr,i) tending to infinity with i. If
f1,i, . . . , fr,i forms a regular sequence for all i � 0, then we are done. If this is
not the case, then, by passing to a subsequence, we can assume that f1,i, . . . , fr,i
fails to form a regular sequence for all i. We will show that this latter possibility
cannot occur.

Consider the homogeneous germs [f1,•], . . . , [fr,•]. These are jointly indecom-
posable: indeed, an n-decomposition of them would yield an n-decomposition of
(f1,i, . . . , fr,i) for all i in a neighborhood of ∗, thus bounding ν(f1,i, . . . , fr,i) in this
neighborhood, a contradiction. We may thus assume that [f1,•], . . . , [fr,•] are part
of a maximal set of jointly indecomposable homogeneous germs of positive degree.
By Corollary 5.12, there is an isomorphism of S with a polynomial ring ∗C[Xi]i∈I

where [f1,•], . . . , [fr,•] are mapped to distinct variables. Since distinct variables in a
polynomial ring form a regular sequence, and since this property is invariant under
ring isomorphisms, it follows that [f1,•], . . . , [fr,•] form a regular sequence in S.

To complete the proof, it now suffices to prove the following general statement:
if homogeneous germs [g1,•], . . . , [gr,•] form a regular sequence, then the polynomi-
als g1,i, . . . , gr,i form a regular sequence in some neighborhood of ∗. We do this
in [26, Corollary 4.10]. The proof crucially uses Corollary 5.12 but is otherwise
straightforward commutative algebra. However, the details would take us too far
afield. �

Remark 6.2. The proof of Theorem 6.1 given above is based on [26, §4], and it has
a very different flavor from the proof given in [2]. The proof in [2] has a “bottom
up” structure, using a six-fold induction to prove increasingly nice properties about
the polynomials f1, . . . , fr as the ν-complexity grows. In particular, it relies on
a number of different instances of the Ananyan–Hochster principle. By contrast,
the proof outlined above has a “top down” structure, where the key insight lies in
understanding homogeneous germs with infinite ν-complexity, and then the specific
property of being a regular sequence is descended to the case of large ν-complexity.

�

7. From Hilbert’s Syzygy Theorem to Stillman’s conjecture

7.1. Algebra review. To state Hilbert’s Syzygy Theorem and Stillman’s conjec-
ture, we need to review some algebraic notions. Let S = C[x1, . . . , xn] be the
polynomial ring in n variables. Given polynomials f1, . . . , fr, the ideal (f1, . . . , fr)
is the subset of S consisting of all combinations

∑r
i=1 aifi, where the coefficients ai

are allowed to be arbitrary polynomials in S. Generally, the interesting properties
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of a collection of polynomials f1, . . . , fr depend only on the ideal (f1, . . . , fr), and
not on the specific choice of generators.

An S-module is a ring-theoretic analogue of a vector space. In particular, an
S-module is an abelian group M together with a scalar multiplication S×M → M
that satisfies certain basic axioms, such as distributivity. The simplest modules are
the free modules Sm and those behave very analogously to vector spaces. The free
module Sm is the set of sequences (a1, a2, . . . , am) with ai ∈ S; addition is termwise
and scalar multiplication is f · (a1, . . . , am) = (fa1, . . . , fam) for any f ∈ S.

Hilbert’s Syzygy Theorem compares arbitrary S-modules (which can be quite
complicated) with free S-modules. The key definition is that of a free resolution:
this is a diagram

(7.1) Sb0 ϕ1←−−− Sb1 ϕ2←−−− Sb2 ϕ3←−−− · · · ,
where each ϕi is an S-module homomorphism, and where the kernel of ϕ1 equals
the image of ϕ2, the kernel of ϕ2 equals the image of ϕ3, and so on. If M equals
the cokernel of ϕ1, then this is said to be a free resolution of M . In this case, the
first two terms of the resolution provide a presentation for M , with b0 generators
and b1 relations. The numbers b2, b3, . . . are more subtle: b2 is something like the
number of secondary relations (the relations among the relations), and so on. In
astronomy, the word syzygy refers to a conjunction, often of astrological bodies; in
algebra, it is used to refer to these secondary relations, tertiary relations, and so
on.4

Example 7.2. Let S = C[x1, x2], and let M be the S-module S/(x2
1, x1x2). One

has the free resolution of M ,

S1 ϕ1←−−− S2 ϕ2←−−− S1 ϕ3←−−− 0
ϕ4←−−− 0

ϕ5←−−− · · · ,
where the morphisms are represented by matrices,

ϕ1 =
[
x2
1 x1x2

]
and ϕ2 =

[
−x2

x1

]
.

An elementary computation confirms that the kernel of ϕ1 equals the image of ϕ2,
and that the kernel of ϕ2 is zero. �

Of the many invariants one can extract from free resolutions, one of the most
important is projective dimension: the projective dimension of an S-module M is
the minimal p such that M has a free resolution that terminates (i.e., is zero) after
p steps:

Sb0 ϕ1←−−− Sb1 ϕ2←−−− Sb2 ϕ3←−−− · · · ϕp←−−− Sbp ← 0 ← 0 ← · · · .
Hilbert’s Syzygy Theorem states that, for the polynomial ring S, every module
has finite projective dimension. Even better, the projective dimension is bounded
above by the number of variables.

Theorem 7.3 (Hilbert’s Syzygy Theorem). Let S = C[x1, . . . , xn]. The projec-
tive dimension of any finitely generated S-module is at most n. In particular, if
f1, . . . , fr ∈ S, then the projective dimension of S/(f1, . . . , fr) is at most n.

4While the numbers bi are not unique as we have defined them, they can be made unique for
graded modules through the notion of a minimal free resolution.
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Free resolutions are computable objects (in a very strong sense—these objects
can be computed by the computer algebra system Macaulay2 [42]) from which
one can obtain many useful invariants of the sequence f1, . . . , fr; see Remark 7.5
below. The projective dimension provides one measure of the size of the minimal
free resolution of f1, . . . , fr, and it is related to the computational complexity of
answering certain questions about the sequence f1, . . . , fr.

7.2. Stillman’s conjecture. If n is very large, then the bound on projective di-
mension given by the Hilbert Syzygy Theorem might be very far from optimal. For
instance, if we had four cubic polynomials in 10100 variables, Hilbert’s bound would
say that the projective dimension is at most 10100. It is natural to ask if we can
do better. Stillman first proposed this type of question, asking whether there is an
a priori upper bound on the projective dimension of an ideal that depends on the
number of polynomials and their degrees, but which is insensitive to the number of
variables.

Conjecture 7.4 (Stillman’s conjecture). Let d1, . . . , dr be positive integers. There
exists a positive integer B(d1, . . . , dr) satisfying the following condition: if f1, . . . , fr
are any homogeneous polynomials with deg(fi) = di in a polynomial ring S =
C[x1, x2, . . . , xn] (for any n), then the projective dimension of S/(f1, . . . , fr) is at
most B(d1, . . . , dr).

Stillman, who is one of the authors of the computational programMacaulay2 [42],
was interested in this question due to its potential connection with Gröbner basis
algorithms. These algorithms are essential to symbolic computation in algebra and
algebraic geometry, but they are infamous for their complexity: in the worst case,
the run time grows doubly exponentially in the number of variables. However, a
bound on projective dimension—such as the one in Conjecture 7.4—might allow
for alternate computational techniques in special circumstances.

Remark 7.5. The study of free resolutions has applications to a huge array of
topics related to algebra. For instance, free resolutions were used by Stanley in
his proof of the upper bound conjecture in combinatorics [52]. Also, starting with
highly influential conjectures of Mark Green [30,31], which were later largely proven
by Voisin [54–56], free resolutions have been used to understand subtle geometric
properties of algebraic curves. One recent result in this vein is Ein and Lazarsfeld’s
2015 proof of the gonality conjecture from [32]. The gonality of a smooth projective
curve C is the minimal degree of a map C → P1, and the gonality conjecture
relates the gonality of a curve to its free resolution. The interested reader should
see [21]. �
7.3. Special cases of Stillman’s conjecture. When r = 1, the projective dimen-
sion of S/(f1) is at most 1, and when r = 2 the projective dimension of S/(f1, f2)
is at most 2. When r = 3 things become much more complicated, as illustrated by
the following theorem.

Theorem 7.6. Fix any n ≥ 1, and let S = C[x1, . . . , xn]. There exist polynomials
f1, f2, f3 such that the projective dimension of S/(f1, f2, f3) is n (i.e., the maximum
value allowed by the Hilbert Syzygy Theorem).

Variants of this theorem were proven by Burch [14], Kohn [41], and Bruns [12].
Even if one bounds the degrees of the polynomials, the projective dimension can
be surprisingly large for three polynomials.
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Theorem 7.7 ([9]). Fix d and any n � d. There exist degree d polynomials
f1, f2, f3 ∈ S = C[x1, . . . , xn] such that the projective dimension of S/(f1, f2, f3) is

at least
√
d

√
d−1

.

Theorem 7.6 shows that no bound on projective dimension exists solely in terms
of the number of polynomials; the theorem of [9] shows that any positive answer to
Stillman’s conjecture would grow quite quickly in d.

Remark 7.8. In the case where f1, . . . , fr ∈ S = C[x1, . . . , xn] define a smooth
subvariety of Pn−1, a theorem of Faltings shows that the projective dimension of
S/(f1, . . . , fr) is at most 3r [29]. �

8. The Ananyan–Hochster principle implies Stillman’s conjecture

We now explain how to use one instance of the Ananyan–Hochster principle,
namely Theorem 3.1 (which is the same as Theorem 6.1) to prove Stillman’s con-
jecture. We begin with the following elementary observation, which shows that
we can write a given collection of polynomials in terms of polynomials with high
ν-complexity, with great flexibility.

Proposition 8.1. Let d, r ∈ N be given, together with a function N : N → N.
Then there exists s ∈ N with the following property : given any homogeneous poly-
nomials f1, . . . , fr of degrees ≤ d, there exist homogeneous polynomials g1, . . . , gs
of degrees ≤ d with ν(g1, . . . , gs) > N(s) such that each fi can be written as
Fi(g1, . . . , gs) for some polynomial Fi.

Proof. To produce the gj ’s, we execute the following algorithm:

(A) Initialize with t = r and gi = fi for 1 ≤ i ≤ r.
(B) If ν(g1, . . . , gt) > N(t), halt with output (g1, . . . , gt).
(C) Otherwise, make a linear change of variables in the gj ’s so that gt is

N(t)-decomposable, write gt = P (g′1, . . . , g
′
N(t)), replace (g1, . . . , gt) with

(g1, . . . , gt−1, g
′
1, . . . , g

′
N(t)), and return to step (B).

We must explain why this algorithm halts, and why the length of the final list can
be bounded in terms of d, r, and N .

Let di be the degree of gi. In step (C), note that each g′i has degree strictly less
than dt. Thus (d1, . . . , dt−1, d

′
1, . . . , d

′
N(t)) is strictly smaller than (d1, . . . , dt) if we

sort the tuples from largest to smallest and compare lexicographically. Since tuples
of nonnegative integers under lexicographic order is a well-ordered set, it follows
that the procedure terminates.

To bound the length of the final tuple, we proceed inductively. Suppose that
on the first pass through, we reach step (C). Since the new tuple (g1, . . . , gr−1,
g′1, . . . , g

′
N(r)) is smaller than the initial tuple, we can bound the length of the

output purely in terms of d, N , and the length of this new starting tuple, i.e.,
r − 1 + N(r); this is the inductive hypothesis. Thus the length can be bounded
simply in terms of d, r, and N , as required. �

Proof of Stillman’s conjecture. Fix d ∈ N. For s ∈ N, let N(s) be the bound pro-
duced by Theorem 6.1 with r = s; thus, if g1, . . . , gs are homogeneous polynomials
of degrees ≤ d with ν(g1, . . . , gs) ≥ N(s), then g1, . . . , gs is a regular sequence. Now
fix r ∈ N, and let s be as in the above proposition, with respect to d, r, and N(−).
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If f1, . . . , fr are homogeneous polynomials of degrees ≤ d, then we can find
homogeneous polynomials g1, . . . , gs of degrees ≤ d and with ν(g1, . . . , gs) > N(s)
such that each fi can be written as a polynomial fi = Fi(g1, . . . , gs) in the gj ’s;
thus, each fi belongs to the subalgebra C[g1, . . . , gs] of C[x1, . . . , xn]. The lower
bound on the ν-complexity of the gj ’s, together with our choice of N , ensures that
g1, . . . , gs forms a regular sequence (by Theorem 6.1).

Let S = C[x1, . . . , xn], and let R ⊂ S be the subalgebra C[g1, . . . , gs]. Let I ⊂ S
and J ⊂ R be the ideals generated by the f ’s. Since g1, . . . , gs are regular sequences
they are also algebraically independent, and thus R is abstractly a polynomial ring
in s variables, and the Hilbert Syzygy Theorem implies that R/J has projective
dimension ≤ s as an R-module. So we have a free resolution F• → R/J of length
at most s. We now come to the final step, which is standard if a bit technical:
since the gj ’s form a regular sequence on S, we have that S is a free R-module
(see [13, Proposition 2.2.11]), and thus the functor −⊗R S is exact. It follows that
F• ⊗R S → (R/J) ⊗R S is a free resolution, and so (R/J) ⊗R S has projective
dimension at most s. Since (R/J)⊗RS is isomorphic to S/I, the result follows. �

Remark 8.2. This argument yields the “existence of small subalgebras” result that
appears as [2, Theorem B], and which is one the main results of that paper. The
subalgebra is R ⊆ S and it is “small” because s is independent of n, and thus we
could have s � n. �

One key point that we want to emphasize is that the above argument can easily
be used to bound many other important invariants or properties. In other words,
even while projective dimension was the original focus in Stillman’s conjecture, the
consequences of the Ananyan–Hochster principle are much more wide reaching. In
fact, this basic framework is so powerful that Ananyan and Hochster themselves
write, “It is difficult to make a comprehensive statement of all the related results
that follow from the main theorems” in [2, Remark 1.4].

9. From the Hilbert Basis Theorem to GL-noetherianity

Stillman’s conjecture is a finiteness statement, as are various other instances
of Stillman uniformity. A general approach to obtaining finiteness statements in
algebra is through the use of the noetherian property. In this section, we show
how one can deduce Stillman uniformity from a recent noetherianity result due to
Draisma.

9.1. The classical picture of Hilbert and Noether. We begin by recalling the
definition of the noetherian property, as it appears in every graduate algebra course:

Definition 9.1. A commutative ring R is noetherian if every ascending chain I1 ⊂
I2 ⊂ · · · of ideals in R stabilizes (i.e., satisfies In = In+1 for n � 0). Equivalently,
R is noetherian if every ideal of R is finitely generated. �

The equivalence of the two conditions in the definition is a standard exercise.
While it may not be apparent why the noetherian condition should be natural
or important, the work of Hilbert and Noether demonstrated this convincingly.
Essentially, many rings one cares about are noetherian, and the noetherian property
implies most other finiteness properties of interest. The first point is a consequence
of the famous Hilbert Basis Theorem:
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Theorem 9.2 (Hilbert Basis Theorem). The polynomial ring C[z1, . . . , zn] is noe-
therian.

As Hilbert was well aware, there is an intimate link between commutative algebra
and algebraic geometry, and so the Hilbert Basis Theorem therefore has geometric
implications. It is with these sorts of results that our interests lie, so we now explain
them. For a set S ⊂ C[z1, . . . , zn] of polynomials, let V (S) ⊂ Cn be their common
zero locus,

V (S) = {z ∈ Cn | ϕ(z) = 0 for all ϕ ∈ S}.
It is an easy exercise to verify that V (S) = V (I) where I is the ideal of C[z1, . . . , zn]
generated by S, so we may as well restrict our attention to ideals when considering
V (−). Subsets of Cn of the form V (I) are called closed algebraic sets, and, in the
dictionary between commutative algebra and algebraic geometry, they correspond
to ideals. In fact, another classical theorem of Hilbert, the Nullstellensatz, implies
that I �→ V (I) is a bijection between a certain class of ideals—the radical ideals—
and closed algebraic sets. As the name suggests, there is a topology on Cn in which
the closed sets are exactly the closed algebraic sets; this is the Zariski topology.

We have just seen that closed algebraic sets are the geometric counterpart to
ideals. What then is the geometric analogue of the noetherian property? Observing
that an inclusion I ⊂ J of ideals yields an inclusion V (J) ⊂ V (I) in the opposite
direction on algebraic sets, we are led to the following definition.

Definition 9.3. A topological space X is noetherian if every descending chain
· · · ⊂ Z2 ⊂ Z1 ⊂ X of closed subsets of X stabilizes, i.e., satisfies Zn = Zn+1 for
n � 0. �

The above discussion immediately yields the following geometric form of the
Hilbert Basis Theorem.

Theorem 9.4 (Hilbert Basis Theorem, geometric form). The space Cn, equipped
with the Zariski topology, is a noetherian topological space.

Remark 9.5. Suppose that V is a finite-dimensional complex vector space. One
then has the notion of a polynomial function V → C: these are just polynomials in
linear functionals on V . One can therefore define closed algebraic sets in V and the
Zariski topology on V , just like on Cn, and the Hilbert Basis Theorem continues
to apply. �

9.2. A sample application of the Hilbert Basis Theorem. We have stated
that the noetherian property implies most other finiteness properties one might
want. For seasoned algebraists, this principle is second nature. For the benefit of
readers not in this group, we now provide one example.

Suppose that f1, . . . , fr ∈ C[x1, . . . , xn] = R are homogeneous polynomials, and
let I be the ideal they generate. Since I is a homogeneous ideal, the quotient ring
R/I is graded. The Hilbert function of R/I is the function N → N defined by

HFR/I(m) = dimC(R/I)m,

where (R/I)m denotes the degree m piece of R/I.

Example 9.6. Suppose that f ∈ R has degree d and is nonzero, and consider
the principal ideal I = (f) it generates. The degree m piece of I consists of all
polynomials of the form gf , where g has degree m − d; note that g is uniquely
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determined from gf since R is an integral domain. We thus see that the dimension
of Im coincides with that of Rm−d, using the convention that this has dimension 0
for m < d. It follows that

HFR/I(m) = dimRm − dimRm−d.

Since Rm is the vector space of degree m polynomials in n variables, we have
dimRm =

(
n+m−1
n−1

)
, and thus the above is an explicit formula. Of course, if f = 0,

then I = (f) = 0 as well, and so HFR/I(m) = dimRm. �
An interesting problem is to try to understand what the possibilities for the

Hilbert function are, perhaps under constraints on the f ’s. In general, this is a
difficult problem. However, the noetherian property yields an important finiteness
result, without much effort.

Theorem 9.7. Let R = C[x1, . . . , xn], and fix d1, . . . , dr ∈ N. As (f1, . . . , fr)
varies over all tuples in R of homogeneous polynomials of degrees (d1, . . . , dr) in n
variables, only finitely many Hilbert functions appear.

Proof. LetXd,n be the set of all homogeneous polynomials of degree d in n variables,
and let Y = Xd1,n × · · · ×Xdr,n. This is a finite-dimensional complex vector space,
and thus carries a Zariski topology; furthermore, equipped with this topology, Y is
a noetherian space by the Hilbert Basis Theorem. Each point y ∈ Y corresponds to
a tuple (f1, . . . , fr) of polynomials in C[x1, . . . , xn] with deg(fi) = di. For a point
y ∈ Y , we let Hy denote the Hilbert function for R/I where I is generated by the
tuple corresponding to y. We must show that the set {Hy | y ∈ Y } is finite.

A common theme in algebraic geometry is that objects exhibit generic behavior.
We now explain what this means for Hy. Suppose that Z ⊂ Y is a nonempty
Zariski closed set. By noetherianity of Y , the space Z can be written as a finite
union Z1 ∪ · · · ∪ Zk where each Zi is an irreducible closed set (i.e., it does not
nontrivially decompose into a union of closed subsets). One can then show, using
standard algebraic methods, that each Zi contains a nonempty open subset Ui such
that y �→ Hy is constant on Ui. This is what we mean by H admitting a generic
behavior. We saw this already in Example 9.6: there the generic behavior occurred
on the open set f �= 0, while degenerate behavior appeared on the closed set f = 0.

Keeping the above notation, let U = U1 ∪ · · · ∪ Uk. This is a nonempty open
subset of Z, and so its complement Z ′ = Z \ U is a proper closed subset of Z.
Furthermore, we know that off of Z ′, we see only finitely many values for H, since
H is constant on each Ui.

The noetherian property now gives us the desired result. Indeed, let Z1 = Y . The
previous paragraph produces a proper closed subset Z2 ⊂ Z1 (what was called Z ′

there) such that H takes on finitely many values on Z1\Z2. Now apply the previous
paragraph again to Z2, assuming it is nonempty, and get Z3 ⊂ Z2 with analogous
behavior. This process thus produces a strictly descending chain · · · ⊂ Z2 ⊂ Z1

of closed subsets of Y , and therefore must terminate in finitely many steps by the
noetherian property. Since H takes finitely many values on each piece Zi \ Zi+1

and there are finitely many pieces, the result follows. �
9.3. Draisma’s theorem. In the previous section, we considered the set Xd,n of
homogeneous polynomials of degree d in n variables as a geometric object, and saw
that we could use ideas from algebraic geometry to prove an interesting result about
polynomials. We would now like to apply similar ideas to the study of polynomials
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of fixed degree in an arbitrary number of variables to prove instances of Stillman
uniformity. As a first step in this direction, we need an analogue of the Hilbert
Basis Theorem in this new setting.

To begin, let Xd denote the space of all homogeneous polynomials of degree d
in an arbitrary number of variables. Like Xd,n, this is a complex vector space;
however, unlike Xd,n, it is infinite dimensional. Nonetheless, we define the Zariski
topology on Xd analogously to before. Precisely, an element of Xd can be written
in the form

∑
cαx

α, the sum being over degree d multi-indices α. One can regard
the cα’s as coordinate functions on Xd. By a polynomial function on Xd, we mean
a polynomial in the cα’s. A closed algebraic set in Xd is then a set that can be
realized as the common zero locus of a set of polynomial functions.5 More generally,
one can define closed algebraic subsets of Xd1

× · · · ×Xdr
for any d1, . . . , dr ∈ N.

Based on the discussion thus far, one might expect us to now say that Xd is
a noetherian topological space. However, this is far from the truth: it is simply
too large! For example, just consider the case d = 1. An element of X1 can be
written in the form

∑
i≥1 cixi. Let Zn ⊂ X1 be the closed algebraic set defined by

c1 = c2 = · · · = cn = 0. Then the Z’s form an infinite strictly descending chain
of closed sets, which shows that X1 is not noetherian. Similar examples can be
constructed for Xd, for any d ≥ 1.

Not long ago, this would have been the anticlimactic end of the story. However,
in the last decade an important principle has emerged (which is the basis of the
burgeoning field of representation stability, as well as the results discussed in §10.6):
many large objects that have a large amount of symmetry are noetherian when
the symmetry is appropriately taken into account. For the present situation, the
following definition makes this idea precise.

Definition 9.8. Let X be a topological space equipped with an action of a group
G. We say that X is G-noetherian if every descending chain of G-stable closed
subsets stabilizes. �

To consider this property in relation to the space Xd, we must first specify
our group. The group GLn of invertible n × n matrices acts on the set Xd,n of
homogeneous polynomials of degree d in n variables via linear changes of variables.
Thus the group GL∞ =

⋃
n≥1 GLn acts on the set Xd =

⋃
n≥1 Xd,n. Since most

natural properties in commutative algebra (such as projective dimension of an ideal)
are invariant under linear changes of variables, we can expect most interesting
subsets of Xd to be GL∞-stable. It is therefore reasonable to restrict our attention
to GL∞-stable subsets.

Example 9.9. Any two nonzero elements of X1 belong to the same GL∞-orbit.
Thus there are precisely three GL∞-stable closed subsets of X1: the whole space,
the set {0}, and the empty set. It follows that X1 is GL∞-noetherian. �
Example 9.10. An element of X2 can be regarded as a quadratic form in some
number of variables, and thus has an associated rank (the rank of the corresponding
symmetric matrix). The theory of quadratic forms over the complex numbers shows
that any two forms of the same rank belong to the same GL∞-orbit. Furthermore,

5The astute reader will recognize Xd = lim−→Xd,n as an ind-variety. The Zariski topology
defined above is ad hoc, and does not come from a general construction on ind-varieties. However,
for GL∞-stable sets, the condition of being closed in our topology is the same as being closed in
the ind-topology; see [25, §2].
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it is not difficult to see that the set Zn ⊂ X2 of forms of rank ≤ n is closed: it is
the common zero locus of certain minors of the corresponding symmetric matrix.
We thus see that the GL∞-stable closed subsets of X2 are the Zn’s together with
the whole space and the empty space. It follows that X2 is GL∞-noetherian. �

As we have just seen, one can classify the GL∞-stable closed subsets of X1 and
X2, and thus establish the GL∞-noetherian property for them by hand. However,
in most other situations, the GL∞-stable closed subsets defy classification, and
proving the property is nontrivial. The first major step forward came in Egger-
mont’s work [22], in which he established the noetherian property for X2×· · ·×X2

(any number of factors). Shortly thereafter, Derksen, Eggermont, and Snowden [17]
handled the X3 case, and shortly after that, Draisma [19] established the general
case.6

Theorem 9.11 (Draisma). For any d1, . . . , dr ∈ N, the space Xd1
× · · · ×Xdr

is
GL∞-noetherian.

We have thus completed our goal of finding an analogue of the Hilbert Basis
Theorem in the setting of Stillman uniformity. (In fact, Draisma proves an even
stronger result that applies to more general polynomial functors, but a discussion
of this would take us too far afield.)

9.4. Application of Draisma’s theorem to Stillman uniformity. In §9.2,
we saw that the Hilbert Basis Theorem, in its geometric form, could be applied to
obtain interesting finiteness properties of polynomials in a fixed number of variables.
We now show that, in exactly the same way, Draisma’s theorem can be used to
obtain finiteness properties for polynomials in an arbitrary number of variables.
Specifically, we present the second proof of Stillman’s conjecture from [26].

Theorem 9.12 (Stillman’s conjecture). Fix d1, . . . , dr ∈ N. Then there exists
B ∈ N with the following property: if f1, . . . , fr are homogeneous polynomials of
degrees (d1, . . . , dr), then the ideal they generate has projective dimension ≤ B.

Proof. Let Y = Xd1
× · · · ×Xdr

. Each point of y ∈ Y corresponds to some tuple
(f1, . . . , fr) and thus has an associated ideal and projective dimension p(y). We
aim to show that {p(y) | y ∈ Y } is finite following the argument used in the proof
of Theorem 9.7.

To apply this argument, we need to know that p exhibits generic behavior. In
fact, this is true: given any irreducible closed subset Z of Y , there is a nonempty
open subset of Z on which p is constant. This follows from [26, Theorem 5.12]. In
the setting of Theorem 9.7, we said that the generic behavior of Hilbert functions
can be established by standard methods in algebraic geometry. To get the generic
behavior of p, we employ the same methods; however, since we are now in an infinite-
dimensional setting, there are a number of complications, and our proof crucially
relies on the idealized Ananyan–Hochster principle for R (i.e., Corollary 4.8) to
ensure that things behave well.

The rest of the argument now goes through identically. Start with Z1 = Y .
There is then an open set Z1 \ Z2 on which p takes finitely many values. Now
argue similarly for Z2, and then use Draisma’s theorem to conclude that the chain

6In fact, all the cited works prove their results for the inverse limit of the Xd,n, while our Xd

is the direct limit. However, in [25] we showed that one can go back and forth between the two
spaces.
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· · · ⊂ Z2 ⊂ Z1 is finite. There are two facts we have tacitly used here: first, a
GL∞-stable subset of Y has finitely many irreducible components, each of which
is GL∞-stable; and second, one can take the set Z2 (and all subsequent Zi’s) to
be GL∞-stable, essentially because p is GL∞-invariant (that is, p(gy) = p(y) for
y ∈ Y and g ∈ GL∞). �
Remark 9.13. The proof of Stillman’s conjecture given above appears in [26, §5].
It provides a third proof, following Ananyan–Hochster’s original proof, and our
ultraproduct proof from [26] outlined in §6–§8. This third proof is totally different
in character from those other two proofs, as it does not go through the theory of
small subalgebras. �
Remark 9.14. Draisma’s theorem can be used to establish many other instances of
Stillman uniformity; see §10.4. �
9.5. The Draisma–Lasoń–Leykin initial ideal proof. One seemingly natural
way to approach Stillman’s conjecture would be through the theory Gröbner bases.
Shortly after [26] appeared, Draisma, Lasoń, and Leykin [20] used this type of
approach to give a fourth proof of Stillman’s conjecture. We now give a very brief
overview of this fourth proof; we assume familiarity with topics related to Gröbner
bases, such as generic initial ideals.

The essential idea in [20] is to develop a good theory of Gröbner bases in the
ring R of bounded-degree series, using the graded revlex term order.7 In particular,
Draisma, Lasoń, and Leykin develop a version of Buchberger’s algorithm which
works for bounded-degree series. The finiteness properties of this algorithm stem
from Draisma’s theorem and from Corollary 4.8, and yield a finiteness result for
generic initial ideals of ideals generated in specified degrees [20, Theorem 3]. Since
projective dimension is invariant under passing to the generic initial ideal (using
graded revlex) [8], this implies Stillman’s conjecture.

10. Related topics

We end by discussing some topics related to the questions raised in Stillman’s
conjecture and elsewhere.

10.1. Changing the base field. In this article, we chose the base field C for
expository purposes. Just about every theorem in the paper holds over an arbitrary
field k. (Due to the use of partial derivatives, the proof of Theorem 4.6 outlined
in §4.4 requires much more care in positive characteristic. But the central ideas
remain the same.)

Ananyan and Hochster’s original work was over an arbitrary algebraically closed
field [2]; this is sufficient for proving Stillman’s conjecture over any field, though
some of their auxiliary results on strength and its consequences were not known
over other fields. We extended many—but not all—of those results to an arbitrary
perfect field in [26] and then to possibly imperfect fields in [27]. The initial ideal
proof of [20] also holds over an arbitrary field.

While one can easily define ν-complexity over any field, some incarnations of the
Ananyan–Hochster principle that hold over perfect fields will fail over fields that
are not perfect. This is because ν-complexity can depend on the base field (i.e., it

7The graded revlex term order is a natural term order for R because it interacts well with the
maps R → C[x1, . . . , xn] for all n.
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can change after passing to a larger field). For instance, let k = Fp(a1, a2, a3, . . . )
be a field where the ai are independent transcendental elements. For each n, the
polynomial fn =

∑n
i=1 aix

p
i has ν-complexity n. However, if we pass to the perfect

closure of k, then fn factors as fn = (
∑n

i=1
p
√
aixi)

p, and it thus has ν-complexity 1
over this field extension. For an imperfect field k, it would be interesting to better
understand exactly which implications of the Ananyan–Hochster principle depend
only on the value of ν over that field k.

10.2. Effective bounds. In their first paper on Stillman’s conjecture, which fo-
cused on the case where f1, . . . , fr were all quadratic polynomials, Ananyan and
Hochster gave an asymptotic bound of (2r)2r on the projective dimension of the
ideal generated by f1, . . . , fr [1, §6]. For the general case, Ananyan and Hochster’s
techniques could lead to an effective bound for the function B(d1, . . . , dr) from
Stillman’s Conjecture (see Conjecture 7.4), but the bound was not worked out
explicitly in [2]. However, in their very recent paper [3], Ananyan and Hochster
provide explicit such bounds for ideals generated in degree at most 4. By contrast,
the methods of [26] and [20] are inherently ineffective.

In a different direction, there has been some work on producing families of ex-
amples that provide lower bounds for B(d1, . . . , dr). For instance, if f1, . . . , fr have
degree d, then [44] produces a family of ideals whose projective dimension grows
like dr−2 as d → ∞; see also Theorem 7.6 above, which comes from [9].

Finally, there is work on producing tight bounds in special cases like three cubics
or four quadrics; see [23, 24, 36, 43]. There are a great many open questions in this
area and the expository article [46] provides a nice introduction (though it was
written before many of these recent advances).

10.3. Variants of Stillman’s conjecture with different inputs. One can ask
whether analogues of Stillman’s conjecture hold where, instead of fixing the degrees
of the forms, one instead fixes some other invariants of the ideal. For instance, [15]
shows that the projective dimension a nondegenerate prime ideal can be bounded
by a function of its degree.

There are also negative results in this vein. The results of [37] produce primary
ideals of bounded multiplicity and codimension, but with arbitrarily large projective
dimension. In [45], McCullough shows that for an ideal in an exterior algebra,
there is no Stillman-type bound on Castelnuovo–Mumford regularity (the projective
dimension of ideals in the exterior algebra is typically infinite, but regularity is
finite).

10.4. Variants of Stillman’s conjecture with different outputs. In [25], we
consider generalizations of Stillman’s conjecture where the input is the same, but
where we bound invariants other than projective dimension.

We define an ideal invariant as a rule τ that associates to each homogeneous
ideal I ⊆ k[x1, . . . , xn] a quantity τ (I) ∈ Z∪{∞}, and where τ (I) that is invariant
under linear changes of coordinates of the polynomial ring. We say τ is degreewise
bounded if there exists a function B(d, r) such that τ (I) ≤ B(d, r) or τ (I) = ∞ for
every ideal I which is generated by r polynomials of degree at most d; crucially,
B(d, r) does not depend on the number of variables. In this language, Stillman’s
conjecture says that the invariant projective dimension is degreewise bounded.

To obtain boundedness results, we require two niceness conditions on our in-
variants. First, we say that τ is cone-stable if adjoining a new variable does not



UNIFORMITY FOR BOUNDED DEGREE POLYNOMIALS 111

affect its value. Second, we say that τ is weakly upper semicontinuous if it is upper
semicontinuous in any flat family of ideals. (Many interesting invariants, includ-
ing projective dimension and Castelnuovo–Mumford regularity, are weakly upper
semicontinuous but not upper semicontinuous.) In [25, Theorem 1.1] we prove the
following.

Theorem 10.1. Any ideal invariant that is cone-stable and weakly upper semicon-
tinuous is degreewise bounded.

This provides many new variants of the Stillman uniformity phenomena de-
scribed in the introduction. It is also closely connected to GL-noetherianity results,
such as Draisma’s theorem and those discussed below.

10.5. Hartshorne’s conjecture. Hartshorne famously conjectured that every
smooth subvariety X ⊆ Pn of codimension c must be a complete intersection if
c < 1

3n [33]. In [28], we used the circle of ideas related to the Ananyan–Hochster
principle to give a simple proof of a special case of this conjecture. In particular,
we showed that if one fixes c and the degree of X, then Hartshorne’s conjecture
holds whenever n � c, deg(X). This extends results of Hartshorne, Barth–Van
de Ven, and many other authors [4–7, 10, 49] from characteristic zero to arbitrary
characteristic.

10.6. More on GL-noetherianity. Draisma’s theorem is closely connected to
some specific conjectures of the third author that arose in his work on syzygies
of Segre embeddings [51], which propose that twisted commutative algebras might
satisfy certain noetherianity conditions. Similar ideas were being developed in
the work of Church, Ellenberg, and Farb on FI-modules, and which also revealed
noetherianity conditions that held up to a certain group action [16]. In addition,
the special cases of Draisma’s theorem for quadratic polynomials was shown by
Eggermont [22] and the case of a single cubic polynomial was proven by Derksen,
Eggermont, and Snowden [17].

Finally, recall that topological noetherianity of Cn follows from the Hilbert Ba-
sis Theorem applied to C[x1, . . . , xn], which is a much stronger statement. One
can conjecture GL-analogues of the Hilbert Basis Theorem from which the above
theorems would follow. Some work in this direction can be found in [47], though
there are still many open questions in this vein; see also [18].

10.7. Universality of strength. A recent result of Bik, Draisma, and Eggermont
further underscores the centrality of the notion of strength. (Recall that strength
is defined in Remark 2.5, and that it is asymptotically equivalent to ν-complexity.)
Bik, Draisma, and Eggermont prove in [11] that for any GL(W )-invariant Zariski
closed condition, polynomials of high enough strength will not satisfy that closed
condition. This result, which was further strengthened by Kazhdan and Ziegler
in [40], provides another way to make the Anayan–Hochster principle precise. It
also generalizes a theorem of Kazhdan and Ziegler which bounds the strength of a
polynomial in terms of the strength of its partial derivatives [39].
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[9] Jesse Beder, Jason McCullough, Luis Núñez-Betancourt, Alexandra Seceleanu, Bart Snapp,
and Branden Stone, Ideals with larger projective dimension and regularity, J. Symbolic Com-
put. 46 (2011), no. 10, 1105–1113, DOI 10.1016/j.jsc.2011.05.011. MR2831475 ↑103, 110

[10] Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of
Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3,
587–602, DOI 10.2307/2939270. MR1092845 ↑111

[11] Arthur Bik, Jan Draisma, and Rob Eggermont, Polynomials and tensors of bounded strength,
arXiv:1805.01816v2 (2018). ↑93, 111

[12] Winfried Bruns, “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Elementen
erzeugten Ideals, J. Algebra 39 (1976), no. 2, 429–439, DOI 10.1016/0021-8693(76)90047-8.
MR0399074 ↑102

[13] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 ↑104

[14] Lindsay Burch, A note on the homology of ideals generated by three elements in local rings,
Proc. Cambridge Philos. Soc. 64 (1968), 949–952. MR0230718 ↑102

[15] Giulio Caviglia, Marc Chardin, Jason McCullough, Irena Peeva, and Mateo Var-
baro, Regularity of prime ideals. https://orion.math.iastate.edu/jmccullo/papers/

regularityofprimes.pdf. ↑110
[16] Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for rep-

resentations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910, DOI
10.1215/00127094-3120274. MR3357185 ↑111

https://www.ams.org/mathscinet-getitem?mr=2923188
http://arxiv.org/abs/1610.09268v1
http://arxiv.org/abs/1810.00413
https://www.ams.org/mathscinet-getitem?mr=750529
https://www.ams.org/mathscinet-getitem?mr=0422294
https://www.ams.org/mathscinet-getitem?mr=0379515
https://www.ams.org/mathscinet-getitem?mr=0354661
https://www.ams.org/mathscinet-getitem?mr=862710
https://www.ams.org/mathscinet-getitem?mr=2831475
https://www.ams.org/mathscinet-getitem?mr=1092845
http://arxiv.org/abs/1805.01816v2
https://www.ams.org/mathscinet-getitem?mr=0399074
https://www.ams.org/mathscinet-getitem?mr=1251956
https://www.ams.org/mathscinet-getitem?mr=0230718
https://orion.math.iastate.edu/jmccullo/papers/regularityofprimes.pdf
https://orion.math.iastate.edu/jmccullo/papers/regularityofprimes.pdf
https://www.ams.org/mathscinet-getitem?mr=3357185


UNIFORMITY FOR BOUNDED DEGREE POLYNOMIALS 113

[17] Harm Derksen, Rob H. Eggermont, and Andrew Snowden, Topological noetherianity
for cubic polynomials, Algebra Number Theory 11 (2017), no. 9, 2197–2212, DOI
10.2140/ant.2017.11.2197. MR3735467 ↑108, 111

[18] Jan Draisma, Noetherianity up to symmetry, Combinatorial algebraic geometry, Lecture
Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 33–61, DOI 10.1007/978-3-319-04870-
3 2. MR3329086 ↑111

[19] Jan Draisma, Topological noetherianity for polynomial functors, arXiv:1705.01419v1 (2017).

↑89, 108
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